
NRL Report 8275

REMOS: A Remote Communications
Operating System for Real-Time Activities

STEPHEN SUTTON

Mechanics of Materials Branch
Ocean Technology Division

December 20, 1978

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

:Z!

r-
:3-

C-1

Irl

rrr

CONTENTS

INTRODUCTION 1

THE REMOS SYSTEM 2

General .. 2
Design Techniques 3

PROCESS STRUCTURE AND DISTRIBUTION 3

General Configuration 3
Communication Link 5

PRIMITIVE MODULES 5

Line Handlers 6
Kernel-Control Modules (KCM's) 6
Process Synchronization 7
The Exchange-Synchronization Primitives 7
Multiple-Satellite Addressing 8

MIDLEVEL CONCEPTS 9

Process Segmentation 9
Process Control Segment (PCS) 10
Access by Segment 10
Standard Rendezvous 10

HIGH-LEVEL CONCEPTS 11

Process Migration 11
Context Switching 12
Run-time Remote Support 12

SATELLITE PROGRAM CREATION 13

USER INTERACTION 14

The Stream Demon 14

SUMMARY 16

REFERENCES 17

iii

REMOS: A REMOTE COMMUNICATIONS OPERATING SYSTEM

FOR REAL-TIME ACTIVITIES

INTRODUCTION

The digital computer has been a revolutionary and powerful tool for the solution of
scientific problems from its very inception. Although most of this power and versatility has
been directed toward non-real-time analysis, the digital computer is beginning to have an
influence on the real-time collection of empirical data. Ultimately, the joining of these
capabilities will provide immense power for the solution of complicated and previously
intractable problems involving the complex analysis of large amounts of experimental data.

If this goal is to be fully realized, a wide variety of computational resources must be
utilized. Minicomputers or microcomputers offer a cost-effective approach to the implemen-
tation of local real-time nodes in a larger process, but they suffer from a lack of computa-
tional power for larger programs. Large-mainframe computers offer a cost-effective answer
to the solution of large analysis problems, but they are generally too expensive to be used as
real-time controllers.

A very attractive solution is a union between these two types of computers, in which a
network of small, inexpensive "satellite" minicomputers or microcomputers is under the
general control of a much larger mainframe or "host." This allows the data collected by the
satellites to be immediately available to the host on a pseudo-real-time basis (that is, the
host will not have to respond instantly to real-time events, but it will respond "soon," on
the order of normal time-shared delays) so that large and sophisticated analysis programs
can evaluate the data and, presumably, alter the control algorithms in the satellite.

Typically, an installation that has access to any large-mainframe computer equipped
with a wide variety of analysis and applications packages would be linked to a small, port-
able, inexpensive computer that would be located in proximity to a data-acquisition activity.
The satellite, under the general control of the host, could then be dedicated only to the task
of gathering the data and controlling the testing apparatus, and it would transfer the data
back to the host for analysis. The user in this system would normally remain in direct con-
tact with the host computer, which has the broad range of facilities he needs, and the satellite
could simply be viewed as a real-time extension of the host.

There are many practical constraints to the design of such a system. In many cases the
satellite computers require much supporting hardware, such as disk drives, to support large,
local operating systems. These devices can make satellites too expensive to be used at many
locations and can increase maintenance costs and down time.

It is also apparent that software costs are a major expense in the creation of small com-
puter systems, and they are a major consideration in the design of such systems. The ex-
tremely desirable goal of implementation-independent software can be realized by the

Manuscript submitted August 31, 1978.

1

SUTTON

coding of as much of the system as possible in a higher-level language by the use of standard
programming constructs and good programming techniques such as modularization. The
mainframe computer, with its wide variety of programming aids, is generally best equipped
to handle this task in a cost-effective manner.

REMOS (REMote Operating System) was designed to accommodate these constraints
and is an attempt to design a viable, cost-effective system for linking real-time control to
mainframe computing power in a relatively hardware-independent environment. This paper
documents the various design features and the use of the REMOS system, and its content
should be of interest to those engineers and scientists who are automating their data acquisi-
tion facilities, as well as to the designers of distributed and real-time computer systems.

The contents of this paper should also serve as a brief tutorial in the concepts of dis-
tributed computation, since many of the ideas and methods common to this area are addressed
in the REMOS system. Of particular interest is the process-synchronization mechanism, since
REMOS is probably the first operation system to implement this relatively new technique.

THE REMOS SYSTEM

General

REMOS (REMote Operating System) is a software system designed to fuse the resources
of any large time-shared computer (host) and a small, inexpensive minicomputer or micro-
computer (satellite). The REMOS system was designed for situations in which one or more
satellites are dedicated to some real-time function such as data acquisition or process control,
but it is flexible and versatile enough to be used in a variety of applications.

In REMOS the host computer serves as the operating system and controller for the
satellite computer. The REMOS design philosophy is that every bit of background or non-
real-time processing is brought into the host computer, where a wide range of programming
resources can be effectively utilized. The satellite performs only the real-time activities and
can therefore be small, inexpensive, and portable, with no large peripherals. The entire system
remains under the control of the host computer.

The REMOS system was designed for a high degree of transferability between host
computers; this transferability was accomplished primarily by the programming of the host-
resident REMOS modules in a high-level language and careful separation of any computer-
dependent modules. The particular satellite chosen for the REMOS system was the LSI-11,
a minicomputer made by the Digital Equipment Company.

One of the primary design goals of the REMOS system is that it be an open-ended system
that can be easily adapted to a variety of applications. REMOS provides the host computer
with a very powerful and versatile set of control primitives with which to control the satellite
computer. They are described in the section "Primitive Modules." Added to these primitive
capabilities is a flexible set of operations for transporting satellite programs and data between
host and satellite; these are described in the "Midlevel Concepts" section. The combination
of primitive and midlevel capabilities forms the basis for the most sophisticated functions of
the REMOS system, and these are described in the "High-Level Concepts" section.

2

NRL REPORT 8275

The remaining sections of the paper present techniques for creating satellite programs
on the host computer and some practical tools to be used to attach an interactive user to the
system. G

References 1 and 2 describe a data-acquisition system that uses the REMOS system
and may be of particular interest to those involved in materials testing.

Design Techniques

The design techniques employed in the development of REMOS reflect the general
philosophy behind the system. The stated goal was to give prime consideration to system
portability, reliability, durability, and efficiency. These are in a sense all interrelated, and
lead ultimately to a system that is easy to maintain, modify, and transport between uses.
These are precisely the goals, techniques, and methods of the structured programming used
in the REMOS system.

The REMOS system was designed by use of a top-down approach and was implemented
in modular, self-documenting code. Flexibility to adapt to different host and communica-
tion lines was built into the system design to ease translation to a new host. At present,
REMOS services only the LSI-11 satellite, but adaptation to any of the current micro-
computers or small minicomputers would not require a major rewriting of the system except
for the cross-compilation facilities.

PROCESS STRUCTURE AND DISTRIBUTION

General Configuration

In the discussion below, a single satellite will generally be assumed to be under the
control of the host-resident operating system (Fig. 1). Multiple satellites can be controlled
by a separate REMOS module in the host dedicated to each satellite or by a single REMOS
host package controlling several satellites (shown in brackets in Fig. 1). REMOS has facilities
to allow this to be easily accomplished and these are discussed later in the paper.

COMMUNICATION
I LINE

-1
I

11 I
I
I
I
I
I

II _J

Fig. 1 - Host-satellite configuration

3

SUTTON

There are distinct roles played by the various processes in the system. The term
'process" has come to have a distinct but vaguely defined connotation in the field of
operating-system and interprocess communication theory. In this paper one can assume
that a process is simply a computational entity that performs some function. It may be a
single software program, or a small set of programs working together toward a common
purpose.

The first realm to be considered is that of the "user" processes (Fig. 2). These gener-
ally change from application to application and are concerned with accomplishing the over-
all data acquisition task. Each such user process can be logically separated into a real-time
portion and a background portion. The real-time portion is composed of those activities
that must be responsive to some external events and will not function properly if that re-
sponse cannot be maintained. The remaining activities of the user process are classified as
background activities. The general philosophy of the REMOS system is to perform all back-
ground activities in the host, programmed as one would normally program the host, and
relegate only the real-time activities to the satellite. REMOS provides the necessary facilities
for transferring data between the background and real-time portions of the user process.

The second realm to be considered is that of processes in the satellite that act in sup-
port of the user process and do not in general change from one user activity to another.
These processes are generally called the operating system of the satellite and would tradi-
tionally be placed within the satellite. The REMOS system, however, puts those operating
system activities that are not real-time in the host computer. The operating system functions
that must provide real-time support of the user process are simply attached to the satellite
real-time process as subroutines.

REMOS is thus almost entirely in the host, and the host assumes all the duties and
powers of an operating system for the satellite except that it manages the satellite re-
motely across a communication link. REMOS allows the background user processes in the

HOST SATELLITE

Fig. 2 - Logical structure of a user process

4

NRL REPORT 8275

host to communicate easily with the satellite user process. REMOS was designed to allow
the user to extend the operating-system services without a detailed knowledge of the inter-
nal performance of the system. REMOS is actually a little broader than a normal operating
system in that it provides such services as cross compilation, satellite process loading and
unloading, and various forms of data transmission between the host and satellite user
processes.

There are several advantages in this configuration. The operating system is now con-
tained almost entirely within the host and can be programmed in a high-level language. The
system then becomes highly transferable between host computers, and it is easy to maintain,
update, and modify. All implementation-dependent processes in REMOS are carefully sep-
arated for ease in translation to a new system. This interchangeability provides security from
host failure, durability (since languages tend to last longer than computers), and the con-
venience of choice of the host that currently provides the greatest economy and power for
a particular job. Although the use of a high-level language itself is not enough to guarantee
this, the use of structured-design technique and modularity within that language does.

REMOS is programmed in ANSII standard FORTRAN chosen not particularly for
convenience but for interchangeability. This enables the features of the system to be easily
tailored or extended to a particular use.

Communication Link

REMOS is independent of the particular type of communication link that connects the
host and satellite(s). For example, this link can be a high-speed, parallel, direct link between
the two, or a serial, asynchronous or synchronous data link that can be transmitted across
telephone lines. The primary usage at the Naval Research Laboratory is of the serial, asyn-
chronous links that allow the satellites, which are physically portable, to be transported to
remote sites in the field and to be controlled via phone line.

Actually, any existing communication link, however complicated, could be used to
connect the two, but high communication overheads run contrary to the design principals
of the system.

The details of the communication line are not of particular interest here, since this
tends to be somewhat implementation dependent. Instead, the functionality of the host's
remote management and servicing of the satellite user program will be of prime interest.

PRIMITIVE MODULES

Figure 3 shows a diagram of the general REMOS system configuration. The system has
several hierarchial layers of processes, and processes at higher levels depend upon those
below to service their requests. At the lowest level are the primitive modules that provide
the host a fundamental control over the satellite. The user has access to each level of
REMOS, but the upper levels tend to do larger tasks in a more automatic fashion. Access to
the low-level modules provides the user with the ability to customize the REMOS system.

5

SUTTON

Fig. 3 - REMOS logical structure

Line Handlers

There are two processes termed the line handlers, one in the host and one in the satel-
lite, that handle the transmission of raw data across the communication link.

The basic responsibility of the line handlers is to assure that the correct information is
passed between the kernel communication modules. The line handlers have the responsibility
for line-error detection and correction and perform any necessary buffering or translation of
the incoming line information so that it is presentable to the appropriate kernel module. The
line demons are designed so that they are the only modules in REMOS that depend upon
and will change with the actual line type used. In addition, the host line demon and file
handlers are the only modules in the host portion of REMOS that will vary with host type.
This rigid separation of the machine- and line-dependent modules provides for excellent
transferability of the system.

Kernel-Control Modules (KCM's)

The Kernel-Control Modules (KCM's) are those modules that give the host fundamental
control over the satellite. There are basically three such capabilities needed for REMOS: The
host must be able to write anywhere into the satellite's memory, to read from the memory,
and to suspend (and resume) the current user program.

The "load" kernel module can load any contiguous block of information into the satel-
lite's memory, and the "unload" module can read any such block. The "halt" and

6

NRL REPORT 8275

"continue" modules control execution of the user process in the satellite. These kernel proc-
esses in the satellite are interrupt-driven and have priority. This allows the host complete
control over the state of the satellite and precludes a lockout by a rampant user process.

All three of these capabilities are controlled by the host in a strict master-slave fashion.
The satellite cannot forcibly load or unload its memory but can only indicate a request for
such actions, which must eventually be serviced by the host KCM's.

Process Synchronization

Processes in the host and those in the satellite (whether operating system or user) are
asynchronous processes and require a means for process synchronization. By this we mean
simply that these processes essentially run at their own independent pace. If two processes
must exchange information, one may have to wait for the other to reach that place in its
execution sequence where it will be ready to exchange the information. There must in effect
be a "meeting of the minds" between the two processes; synchronization primitives are the
low-level mechanisms that allow the processes to synchronize. This synchronization is a
necessary mechanism for operating systems in general, and is an important mechanism in the
REMOS system.

An example of the need for synchronization is the case when the real-time satellite
user process has completed a portion of its duties and needs to inform the host, which is
checking periodically as its time-shared workload permits. There are many other examples
of the need for this synchronization that are more intimately related to the internal duties
and functions of the REMOS operating system.

The history of interprocess synchronization primitives began in the early days of com-
puters with the test/set primitives, then proceeded through the very powerful semaphors of
Dijkstra, and then to such concepts as ports and mailboxes. Very recently, Zave and
Fitzwater [3] have taken a nicely functional approach to this problem with the introduc-
tion of the "exchange" synchronization, which was chosen for the REMOS system for its
power and flexibility.

The Exchange-Synchronization Primitives

Consider two independent processes A and B that wish to communicate by passing some
information to each other. This is shown schematically in Fig. 4, where the encircled num-
bers indicate the time sequence of the following description. They are allowed to exchange
packets of information through a particular addressable (named) data-collection point called
a "rendezvous." This exchange must be performed at a time when both are ready to do so (a
"meeting of the minds"). When either wishes to perform the exchange, it will call an ex-
change function to perform the exchange. This function, "exchange to communicate," we
will abbreviate by "XC." The XC function receives two arguments from its caller, a rendez-
vous site, and an argument to be passed to the other process through the rendezvous site.
The XC function then presents this value at the rendezvous site (step 1) until the correspond-
ing XC function for the other process (B) presents its value (step 2) by calling the XC func-
tion for the same rendezvous site. At this time an exchange of values is performed (step 3),

7

SUTTON

PROCESS A: RENDEZVOUS "X" PROCESS B:

[FORMULATE AVALI _ [FORMULATE BVALI

CALL XC (X, AVAL) CALL XC (X, BVAL)

[PROCESS BVAL] / [PROCESS AVALI

Fig. 4 - Synchronization exchange functions

and each XC function returns this value to its caller (i.e., A's value goes to B, and vice
versa) and the callers continue on their own ways with their newly exchanged values
(step 4).

The values that are exchanged, in general, have some agreed-upon meaning between
the two processes. From a functional point of view, as expressed by Zave and Fitzwater,
these values may be arbitrarily complex data structures. The REMOS processes may pass
values which are self-contained information or which may be pointers to large tables of
information.

There is a second exchange primitive called "exchange to synchronize" (XS) which is
identical to the XC function except that when a value is presented to a rendezvous site,
if there is no corresponding value with which to be exchanged, the function will return and
report a failure. Two processes may synchronize by both using the XC or by one using the
XC and the other using the XS, but both may not use the XS.

In the REMOS implementation, these functions need to be modified slightly to
attach a time-out value to the XC primitive when the functions are executed by the host.
The XC so modified will return the null value if an exchange is not made within the time-
out limit. With this addition, the XS simply becomes the XC with a zero time out.

The power and utility of these primitives are probably not yet obvious at this point
unless the reader has had previous experience in this field. Reference 2 has a more thorough
treatment of this subject. These synchronization primitives perform a necessary function
for many of the high-level constructs in REMOS that are described below.

Multiple-Satellite Addressing

The REMOS code is structured to allow one host to control several serially-connected
satellites as illustrated in Fig. 1. This requires the inclusion of the Stream Demons in the
satellite. (The Stream Demons are discussed thoroughly in a later section.) This is accom-
plished by making all REMOS service modules in the host reentrant, so that each request
from the user to REMOS must specify a data base that characterizes the particular satellite
to be accessed. This facility allows many satellites' activities to be synchronized, perhaps
to accomplish some common real-time task.

8

NRL REPORT 8275

MIDLEVEL CONCEPTS

The next level in the REMOS process hierarchy is that of the midlevel concepts. These
are host-system independent functions that have widespread use in the manipulation of the
user satellite programs and would be used frequently in any extension or modification of
the REMOS system.

Process Segmentation

A logical structure must be imposed upon the user process so that it can be effectively
managed. Each satellite user process is created as a set of logical segments. A logical segment
is a contiguous section of the satellite's memory that may contain either executable code, or
data, or both, or may contain no usable information. These segments then become the units
for transferring processes or process parts through the system. In many cases these bear a
strong resemblance to the usual type of segmentation used by many large computers, except
that the division is a logical one and of no use to the satellite hardware.

Figure 5 displays the logical segmentation of a typical user satellite process. The general
logical structure remains intact, whether the process is loaded into the satellite or is stored in
the host's filing system.

STATEINFO

PsESEMEENTSEGMENT: MAPDX

SEGMENT

SEG 1: | CODE l

SEG 3: DATA SEGMENT

SEG 4: PROCESSOR

Fig. 5 - User satellite-process segmentation

9

SUTTON

Process Control Segment (PCS)

The first of these segments is called the Process Control Segment (PCS) and is used to
store information about the process. All the information necessary to restore the state of
the processor is kept within the PCS, i.e., the general purpose registers, the program counter
register, and processor status information. This "state" information allows the process to be
halted, removed from the satellite, and later restored and restarted without logical interrup-
tion. The PCS also contains a complete map of the location and length of each segment that
is a part of the process, including itself. The PCS is managed by the REMOS operating sys-
tem and need be of no concern to the casual user; however, it is easy for the user to access
the information in the PCS for any special purpose.

The REMOS PCS is analogous to the technique used by most multiprocess operating
systems to perform these functions.

Access by Segment

There are few rigorous rules for segmenting a user process, but a process is usually
segmented according to how it is to be accessed. Segments may be either of fixed size or of
variable size and they may be either absolute or relocatable. Absolute segments will not
function properly if loaded into any other section of memory. Relocatable segments can be
relocated in memory without being changed.

A code segment contains executable machine code for the satellite and is of fixed
length. Generally these segments are only transferred between host and satellite when the
user process is being loaded or saved.

Data segments can be of fixed length or varying length. The first word of a variable-
length segment contains the current length of that segment and must be kept correct by the
satellite program. Variable-length segments allow the automatic transfer of the minimal
amount of data necessary.

The processor stack segment is the segment that contains the program working stack
that is used heavily by the LSI-11 Computer. It is important to save this stack, when a satel-
lite program is suspended, for restarting at some later time, and this is done automatically
by the REMOS midlevel modules.

REMOS has the ability to transfer whole segments of information by their logical
designation (i.e., "third segment") without its having to know the exact location of the seg-
ment in the satellite memory. This greatly simplifies those operating-system processes that
must manipulate segments and helps to isolate the lower-level system details from the higher
level. Moreover, user service processes can be created that have widespread application and
isolation from the details of a particular user process.

Standard Rendezvous

The PCS also contains a set of standard rendezvous locations for use by the exchange
synchronization functions, the number of which may vary from one user process to another.

10

NRL REPORT 8275

These are available for use by either host or satellite in any mutually agreed upon fashion.
The advantage of including a standard set of rendezvous is that they can be accessed by
logical addresses instead of by their actual memory addresses in the satellite. This aids in the
creation of operating-system routines to service the user process during run time (we will
describe this in more detail later) since these routines can synchronize through these standard
rendezvous locations.

HIGH-LEVEL CONCEPTS

The final realm of REMOS functions we consider implements the high-level constructs
of the system. These are in some sense the least-precisely defined functions, since they are
the ones that are most likely to be tailored to a particular application. This is the level at
which the system will do most of its "growing," where the user who wishes to tailor the sys-
tem to a particular specialized environment will make additions. The ideas discussed below
are intended to display the kinds of situations where the REMOS system could be applied,
and most of the concepts are in various stages of development at the Naval Research
Laboratory.

Process Migration

Entire user processes migrate through the REMOS system, the principal path being
between the host filing system and the satellite, as illustrated in Fig. 6. REMOS has standard
loading and unloading modules that can be requested to load into the satellite an entire
user satellite process from the host's filing system or unload one from the satellite into the
host's filing system. A loaded process may either be one that was previously suspended and
brought back to the host or a fresh one being loaded into the satellite for the first time.

Fig. 6 - User-process migration

11

SUTTON

Context Switching

More than one process can be active within the satellite by means of context switching.
Context switching is employed by operating systems to allow several user processes to use a
single computer with each not aware of the sharing at all. One method used is to keep sev-
eral active user processes in the satellite and time slice, the satellite CPU among them, either
under control of the host, or under local control of a scheduler within the satellite. A second
method used is to allow the host to maintain a number of active user processes in its files
and swap one at a time into the satellite so that it can have the entire satellite to itself for a
period of time called its "time slice." Although the transmission of entire processes causes
high overheads, this approach may work quite well for low-duty-cycle activities. For fast
context switching, the processes will have to be kept in the satellite and scheduled by a
satellite resident scheduler.

Although the original design goal was to dedicate the satellite to one data activity, it
can easily be extended to a multitask environment when necessary. An important point is
that the control essentially remains within the domain of the host processor.

This multitask configuration is used because it is better to keep such a set of logically
independent tasks separated physically than to create one large task to perform the unrelated
duties of the separate smaller tasks.

This context-switching scheme can be further modified to provide practical multi-
programming facilities. If the satellite is to be dedicated to a single class of real-time ap-
paratus, for example, several identical testing machines performing similar tests, then the
user satellite process can be made reentrant and a different data base can be used for each
separate real-time activity. This provides essentially as many logical processes as there are
data bases. The data bases may, of course, be either memory resident or swapped as time
considerations allow. Also, the synchronization primitives provide the means to implement
these types of multiprocessing systems.

Run-time Remote Support

There is a class of direct-support services which the host may perform during the execu-
tion of a real-time process. The only restriction is that the host is not real-time and cannot
be counted upon to give its undivided attention when it is wanted by the satellite. Never-
theless, there are some services that the host can often provide which will not unduly restrict
the real-time capabilities.

Among the most important of these real-time support services is the virtualization of
the memory of the satellite. Effectively, we are allowing the satellite process to use a larger
addressing space than it has in physical memory by shuffling groups of data between the
satellite and the host under control of the host and unknown to the satellite. This is very
similar to the concept of paging in paged computer systems except that address calculation
is not done by the satellite CPU (unless of course the satellite has this capability) but must
be performed by a set of standard routines available to the satellite program.

One form of memory virtualization called "treadmilling" is a system for dumping raw
data to the host while the user satellite process is active. Essentially, the satellite places its

12

NRL REPORT 8275

data on a circular queue, perhaps in logical blocks of some specified length, and the host
works as fast as it can to unload these blocks from the satellite; a common technique is to
store them on a file in the host. Of course, the satellite cannot load the queue faster than the
host can empty it on the average, although short filling bursts are possible. This technique
works well for fairly low duty cycle processes that run for a long time (perhaps days) and
generate a lot of data. The data can be processed by the host as it is received, or it can be
simply stored until the data acquisition activity is completed.

It should again be noted that these types of services will rely heavily upon the syn-
chronization primitives.

SATELLITE PROGRAM CREATION

One of the most important services of the host that does not directly involve real-time
support is satellite program creation. It is highly desirable that the host be able to cross-
assemble or cross-compile programs for the satellite. Satellite program creation is entirely a
background activity and the host is ideally suited to this type of activity.

Since the satellite's duties are primarily real-time, languages that are efficient both in
space and in execution time are desirable, yet a structured language is desirable to ease the
pain of low-level programming.

REMOS will incorporate two types of program-development facilities. The first and
most basic of these is a cross-assembler to assemble standard assembly language for the
PDP-11 instruction set for the LSI-11. The binary output of the assembler will be in a format
directly accessible to the REMOS load module.

Linking, the process of gathering together the subroutines needed to complete the user
satellite process, will be done entirely at source level in the REMOS system. That is, sepa-
rately assembled binary subprograms will not be linked to form a single executable process,
or "load module," but the source codes will be linked before assembly, although several
distinct program entities, each with its own name scope, can be assembled at once. The pri-
mary advantage of this process is that the procedure for linking and loading is greatly simpli-
fied, and the troublesome distinction between binary and source libraries and their separate
access routines is eliminated. The only price paid for these conveniences is a slower compila-
tion time, but since compilation should not be frequent this is not a great burden.

The second facility for program creation that will be designed and implemented is a
high-level, structured programming language. The language will implement the fundamental
structured concepts yet retain good run-time efficiency.

Figure 6 illustrates the flow of satellite user processes through the system. Note the
direction of flow of the process images and that suspended images can migrate to and from
the host under the control of REMOS.

Both the cross-assembler and cross-compiler will be written in the same language as
REMOS (FORTRAN) to continue the host-interchangeability feature.

13

SUTTON

USER INTERACTION

It is important to consider the role played by the user as an interactant in a system such
as the REMOS system. Communication between the user process in the satellite and an
operator at an interactive terminal is a common requirement for real-time systems. One
means of achieving this communication is to allow the satellite to use its own I/O ports to
interrogate the operation directly.

An alternate and better technique is to let the host handle all operator communication,
perhaps at the request of the satellite, and pass succinctly coded results to the satellite. The
host is more-readily equipped to handle operator communication, since this involves a lot
of string parsing and decoding, and for a real-time system probably it should employ some
error checking. This activity is an unnecessary burden on the satellite that is better avoided
if possible. Again, we are transferring any non-real-time processing to the host computer,
where it is most efficiently done.

The Stream Demon

A typical real-time or data-acquisition operational setup is shown in Fig. 7. The remote
satellite is at an experimental site, perhaps a laboratory, and the host is a large time-shared
computer removed from that site. There are two means to attach the user to the system in
this simple configuration. The first is shown as the A path in Fig. 7, with user and satellite
connected to the host by different communication lines or paths. The second technique
(path B) has the user and satellite both share the communication line with the host; it is
of most value when the satellite and user are both removed from the host and the communi-
cation path is probably a telephone line.

HOST SATELLITE

Fig. 7 - User interaction in the REMOS system

14

NRL REPORT 8275

In the latter configuration, there have to be three logically distinct communication
paths. The user must be able to communicate with the host just as though he were a normal
time-shared user; the host and satellite must be able to pass their REMOS-directed messages
between the line handlers; and finally, the user and satellite should be afforded a communi-
cation path for times when the host must be removed from the system.

To allow REMOS to be used in this manner, a small module called the "Stream
Demon" was incorporated into the satellite between the host and the satellite's line handler.
All of the communication paths are logically connected to the Stream Demon through a
"port," and the Stream Demon provides for the proper routing of the messages among these
paths (ports). The logical structure of the Stream Demon is illustrated in Fig. 8.

The Stream Demon, it should be emphasized, is a software module, although its actions
are very much like a hardware switch. The Stream Demon has several logical, bidirectional
streams of information connected to it, usually character streams. These could be from a
user terminal or from the interface to the remote host, or they could be considered to origi-
nate from a process within the satellite. At any given moment, the Stream Demon contains
an interconnect map that determines for each input stream a list of output streams to which
the information is to be passed. The interconnect map can be changed at any time by any of
the external sources by its sending a message specially encoded for the Stream Demon.

Figure 8 shows the interconnect map schematically. There are three distinct paths de-
fined, I, J, and K. Consider the situation in which J is the only active path. This corresponds
to the user at his terminal communicating with the host computer in the normal time-sharing
mode with the satellite not a party to the communication. The user might at that time ini-
tiate a program on the host that calls a REMOS function for information transfer to or from
the satellite. The host-resident REMOS then sends a coded message to the Stream Demon to

STREAM DEMON

Fig. 8 - The Stream Demon

15

SUTTON

reconfigure the interconnect map so that path I is the only defined path through the Stream
Demon. REMOS then sends or receives the information to or from the satellite and, when
finished, reconfigures the interconnect map so that path J is the only active path, and the
user is back in business.

Path K is the one to be used if the host is off-line for a period and the satellite needs
operator interaction. Note that it is possible for multiple Stream Demon paths to be active.
It is therefore possible for the satellite to be left running at the same time the user is using
the host (path J) for background or program development. This allows the user to use the
system in a time-sharing mode without interrupting ongoing real-time activities, yet the
ability to halt or interrupt the satellite through REMOS is maintained.

The ability to redefine the interconnect map is on a priority basis, and each request to
reconfigure has a priority associated with it. These priorities are not built into the system but
can be flexibly assigned, higher priorities usually going to the more reliable or control-type
processes. The highest priority is reserved for the user terminal to allow the user to stop any
runaway condition.

A single host can be configured to control a bank of satellites across a single communi-
cation line with the host using the Stream Demons to route a particular message to the cor-
rect destination satellite, as in Fig. 1. The single line can be connected in parallel to all the
satellites, and the host then addresses a particular satellite by sending the same interconnect
prompt to each Stream Demon. The particular interconnect command is chosen so that all
satellites except the one being addressed route the host message stream to a "null" port. Sub-
sequent characters coming across the line will enter all Stream Demons simultaneously, but in
only one satellite will the stream of characters be sent to the REMOS satellite-resident line
handler. In all others, they will be routed to the "null" port. The addressed satellite stays
active for information transferral until the host redefines the interconnect maps.

In addition, the Stream Demon houses a standard set of I/O service calls (Fig. 8) which
allow satellite resident processes, such as the user process, to exchange information with the
user at the terminal. They would be used in cases where the host is detached from the system
and are exactly analogous to the I/O service-call rotines provided by a resident operating
system.

The Stream Demon allows the simple sharing of the communication line among the host,
satellite, and interactive user. From a very practical point of view this allows the implementor
of real-time systems to make a minimal investment in equipment (i.e., the satellite) and, with
the aid of a remote time-sharing system, gain access to a very versatile real-time data-
acquisition system. In addition, the Stream Demons can be used for a wide variety of message-
handling and message-routing applications.

SUMMARY

The REMOS system was designed because of the need for an effective means of com-
bining computational resources for the solution of complex scientific and engineering prob-
lems that require real-time data acquisition and control of experimental apparatus. The sys-
tem allows a large, time-shared-mainframe host computer to control smaller satellite

16

NRL REPORT 8275

computers that are in turn dedicated to the data-acquisition activity. Primary goals of the
REMOS system are for it to be transferable between host computers, to be open-ended in
the sense that its primitive capabilities can be recombined and augmented to build a wide
variety of specialized systems, and to allow the use of inexpensive, truly dedicated satellite
computers.

The structure of the REMOS system can be viewed as a hierarchical structure, which
begins on the lowest levels with the simple communication handlers and controllers whose
only job is to make sure that primitive information is correctly transferred between host and
satellite. Any system-dependent I/O specifics are confined to these levels, which eases the
job of transferring to a new host computer. Also on this lowest level are the very important
means for interprocess synchronization which use the "exchange" communication primitive
recently developed by Zave and Fitzwater [3].

The next level, or midlevel, is concerned with the segmentation of logical processes
and the migration of these segments through the system. A variety of segments is available
for the transfer of data or code to and from the satellite. All the control (and therefore all
the code) for control of these midlevel and upper-level services is contained in the host and
is coded into a high-level language for ease of maintenance, modification, and transferability.

The final hierarchical level is the highest and in some sense the least-well defined, since
it is at this level that the system most rapidly changes and grows. On this level, many services
can be developed for specialized activities such as multiprocessing and extension of the
memory capabilities of the satellite.

A module called the Stream Demon was incorporated into the system in order to allow
the user a convenient and flexible interface to the system. The Stream Demon has a general
message-stream switching capability used in a variety of ways to facilitate the transmission
of messages, primarily character-oriented message streams, through the system.

The REMOS system offers a practical, cost-effective solution to the problem of bring-
ing a variety of computational resources to bear upon the problem of laboratory data acqui-
sition, and it is currently incorporated into various materials-testing activities at the Naval
Research Laboratory.

REFERENCES

1. S.A. Sutton, "A Model for Computer-Based Data Acquisition and Control," Exp.
Mech. 17:141-146 (Apr. 1977).

2. S.A. Sutton, "Fracture Toughness of Stretched Acrylic Plastic," J. Test. Evaluation
6, No. 6 (Nov. 1978).

3. P. Zave and D.R. Fitzwater, "Specification of Asynchronous Interactions Using Primi-
tive Functions," submitted to IEEE Trans. Software Eng.

17

